

ECS Green Bag Lunch Presentation by Achintya Bezbaruah

October 5, 2010 12:30-1:30PM Hidatsa, NDSU

2015 World Nano Market

Background: Iron Remediation

- Fe⁰ is a potential reducing agent
- Many environmental contaminants are susceptible to reduction reactions
- Iron is non-toxic and inexpensive

Image Credit: Matheson, L.J., Tratnyek, P.G., 1994. Environ. Sci. Technol. 28, 2045-2053.

Background: Iron Redox

Redox Reactions:

$$Fe^{2+} + 2e^{-} \leftrightarrow Fe^{0}$$
 -0.440 V
 $Fe^{0} + RX + H^{+} \rightarrow Fe^{2+} + RH + X^{-}$

Competing Reactions:

$$2Fe^0 + O_2 + 2H_2O \leftrightarrow Fe^{2+} + 4OH^-$$

 $Fe^0 + 2H_2O \leftrightarrow Fe^{2+} + H_2 + 2OH^-$

Background: Iron Filings

- Research focused on chlorinated hydrocarbons (e.g., TCE)
- Successfully implemented in the field as permeable reactive barriers

Background: Nano-ZVI (NZVI)

- Late 1990s: rash of research in NZVI
- Laboratory results were outstanding
- Field studies have shown moderate success

Image Credit: Zhang, W-X., 2003. J. Nanopart. Res. 5, 323-332.

NZVI: Reaction Speed

- Faster reactions with fewer potentially toxic byproducts
- Improvements in orders of magnitude are possible

Image Credit: Wang, C.B., Zhang, W.X., 1997. Environ. Sci. Technol. 31, 2154-2156.

NZVI: Economics

Image Credit :http://www.vironex.com

Image Credit :http://www.science.uwaterloo.ca

NZVI Synthesis

- Synthesis method: borohydride reduction $2Fe^{2+} + BH^{4-} + 3H_2O \rightarrow 2Fe^0 \downarrow + H_2BO^{3-} + 4H^+ + 2H_2$
- Method is safe, inexpensive and well-studied

NZVI Characterization

NZVI Characterization

Particle Size Distribution

NZVI Characterization

- XRD detects no iron oxides (typical corrosion products are hematite and magnetite)
- BET surface area analysis determined specific surface area to be 26 m²/g

NZVI Characterization: Summary

Physical Property	Reported Values (NZVI, BH only)	Our Observed Values
Mean Particle Size (nm)	20-70	35
BET Surface Area (m²/g)	20-55	26
Shell Thickness (nm)	2-3	~2.5

Bare NZVI for Pesticide Removal

Reductive Degradation of Alachlor

Funding: NDWRRI

- Herbicide for the control of grasses/weeds in corn and soybeans
- Maximum Contaminant Level (MCL) = 2 μg/L

Jay Thompson, MS

Results: Alachlor Kinetics

Bare NZVI for Phosphate Removal

NZVI Slurry for Aqueous Phosphate Removal

Funding: Saudi Arabian Cultural Mission and NDSU-CE

Matthew Haugstad, BS

Talal Almeelbi, Ph.D

NZVI for Phosphate Removal

NZVI slurry/particles

NZVI Slurry for Aqueous Phosphate Removal

- Similar results with 1 mg/L and 10 mg/L of PO₄³⁻
- At higher pH desorption is higher

Future Work: Phosphate Removal

- Compare NZVI efficiency with micro-ZVI and iron oxide nanoparticles.
- Study the effect of various parameter such as:
 - o pH
 - redox conditions
 - ionic strength
 - presence of different ions

Entrapped NZVI for Arsenic Removal

Entrapped NZVI for Arsenic Removal

Funding: NDSU-CE

Objective: Entrapment of NZVI in alginate beads for effective treatment of arsenic contaminated groundwater

Bezbaruah et al., J. Hazard. Mater., 2009

Why Alginate?

- Calcium alginate polymer is used as entrapment matrix
- Non-soluble in water
- Non-toxic
- Reduces particle agglomeration
- Biodegradable

SEM image of NZVI-alginate bead

Looking into an Alginate Beads

Dense exterior layer

Porous interior layer

Arsenic: Results

Arsenic (IV) Batch Studies:

- After 45-60 minutes entrapped NZVI out performs bare NZVI
- Blank and control show negligible concentration change
- Entrapped beads can be used in PRB's

Future Work: Arsenic Removal

- Interference studies
- Area groundwater batch tests
- Arsenic (III) tests
- SEM / XRD analyses

herehttp://www.google.com/imgres?imgurl=http://co.w

Development of APGC Delivery Vehicle

Graft Copolymer Coated NZVI

Funding: NDWRRI

Sita Krajangpan, Ph.D

Chad Mayfield, BS

Mike Quamme, BS

Juan Elorza, BS

Amphiphilic Polysiloxane Graft Copolymer (APGC)

Objective: To modify nanoscale zero-valent iron (NZVI) particle surface using APGC for effective groundwater remediation

Hypothesis: APGC provide the colloidal stability and improve capabilities to NZVI for groundwater contaminant removal

Bezbaruah et al., J. Hazard. Mater., 2009, 166, 1339-1343.

Oxidation rate \(^\), Dispersibility \(^\), and Reactive surface area \(^\)

Our Design

APGC synthesis

Krajangpan et al., American Society for Civil Engineers, **2009**, pp 191-212. Krajangpan et al., *Polymer Preprint*, **2008**, 49, 921-922.

A schematic representation of APGC coated NZVI (CNZVI)

CNZVI has significantly higher colloidal stability than bare NZVI

TCE and Arsenic Removal by CNZVI

- Initial concentrations of TCE and As(V): 1, 15, and 30 mg/L
- TCE batch study: 1.5 g/L of NZVI and CNZVI
- As(V) batch study: 1 g/L of NZVI and CNZVI
- Controls and blanks were ran simultaneously
- Aliquots withdrawn at definite time intervals
- TCE and As(V) were analyzed using GC-MS and ICP-AES

As(V) kinetic study

Shelf-life Studies

Sedimentation studies:

- Batch studies: 3 g/L of NZVI and 15 g/L of APGC
- 30 min sonication and 72 hr of 28 rpm rotation
- UV-VIS spectrophotometer

TCE kinetic studies:

- 1.5 g/L of NZVI and CNZVI
- 30 mg/L of TCE initial concentration
- TCE was analyzed using GC-MS

CNZVI sedimentation studies:12 month-period

CNZVI-TCE kinetic studies: 6 month-period

Biodegradation of APGC

APGC Biodegradation

Funding: NDWRRI & ECS Program

Dhritikshama Roy, Ph.D

PDMS Biodegradation

Viability test for microorganisms

Control:
Microorganism
(from batch study)
+ media

PDMS + mineral media + microbes

Further research needed

Microorganisms growing on PDMS spread plates

Biodegradable Polymers

Funding: NDWRRI & ND Soybean Council

Objective: Synthesis of biodegradable amphiphilic copolymer from soybean oil

 Hypotheses: The copolymer will be biodegradable if synthesized with biodegradable soybean oil and PEG.

Harjyoti Kalita, Ph.D

Soy-based Co-Polymer: Sedimentation Studies

S:P (Soybean : PEG, wt%)

Micro-organism-NZVI Interactions

Iron Nanoparticle-Microorganism Interactions: Compatibility Studies

Funding: NDWRRI & ECS Program

Objective: To understand microorganism-NZVI interactions

Hypothesis: Microorganisms can establish a "symbiotic relationship" with NZVI

Rabiya Shabnam, MS

17840 Bezbaruah / Rabiya 234,700 091782 / 5h, Fe Nanoparticle, E. Coli, 08/10/09

E. coli 8739-NZVI Interactions

Bacteria-NZVI Interactions

Findings:

- Bacteria in a lag or early exponential phase are affected by NZVI
- Actively growing bacteria are not effected by NZVI
- Non-replicating bacteria are more susceptible to NZVI toxicity

Microbial Studies: Summary

Findings: Bactericidal effects of NZVI depend on:

- NZVI concentration
- Physical condition of the cell membrane
- Growth phase of the bacteria
- E. coli 8739, Jm109 and Pseudomonas putida F1 show similar effects with NZVI

TEM micrograph of E.coli 8739 with NZVI (5h)

Encapsulated NZVI for TCE Removal

Co-entrapment of NZVI-microorganisms for Groundwater Remediation

Funding: NDSU-CE

Objectives: NZVI and

microorganism Co-entrapment in alginate beads for groundwater TCE degradation

Shanaya Shanbhogue, MS

Milestones

Encapsulation of NZVI

0.3g nZVI

6mL Di wate

4g maltodextrin

Drop wise addition

Encapsulation of Dried alginate beads in alginate polymer

TCE Degradation: Results

TCE degradation using Encapsulated NZVI

Patents/Publications

- Krajangpan, S., Chishlom, B., Bezbaruah, A. (2010) RFT-247 & RFT-247A, Novel Polymer Modified Iron Nanoparticles for Environmental Remediation, US patent. (Patent)
- Kalita, H, Chishlom, B., Bezbaruah, A. (2010), Soybean-based Copolymer, to be filled (Patent)
- Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B., Bezbaruah, A. (2008).
 Polymer Modified Iron Nanoparticles for Environmental Remediation, *Polymer Preprint*, 49, 921-922.
- Bezbaruah, A.N., Krajangpan, S., Chisholm, B.J., Khan, E., Bermudez, J.J.E., (2009). Entrapment of Iron Nanoparticles in Calcium Alginate Beads for Groundwater Remediation Applications, *Journal of Hazardous Materials*, 166, 1339-1343.
- Krajangpan, S., Chisholm, B.J., Kalita, H., Bezbaruah, A.N. (2009). Challenges in Groundwater Remediation with Iron Nanoparticles: Enhancement Colloidal Stability (Chapter 8) in *Nanotechnologies for Water Environment Applications* (Eds: Zhang, T.C., Surampalli, R.Y., Lai, K.C.K., Hu, Z., Tyagi, R.D., Lo, I.M.C.), American Society for Civil Engineers, pp 191-212. (Book Chapter)
- Thompson, J.M., Chisholm, B.J., Bezbaruah, A.N. (2010). Reductive Dechlorination of Chloroacetanilide Herbicide (Alachlor) Using Zero-valent Iron Nanoparticles, Environmental Engineering Science, 27, 227-232.

Patents/Publications

- Kalita, H., Chisholm, B., Bezbaruah, A. (2009) Effects of different graft copolymer constituent groups on sedimentation characteristics of coated iron nanoparticles, *PSME Preprints*, 100:683-685.
- Bezbaruah, A.N. and Kalita, H. (2010) Sensors and Biosensors for Endocrine
 Disrupting Chemicals Stateofthe- art and Future Trends in *Treatment of Micropollutants*in Water and Wastewater (Eds: Virkutyte, J., Varma, R.S., Jegatheesan, V.),
 International Water Association, London, U.K., ISBN: 9781843393160, pp.92-128.
 (Book Chapter)
- Bezbaruah, A.N., Thompson, J.M., Chisholm, B.J. (2009) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles, *Journal of Environmental Science and Health Part BPesticides, Food Contaminants, and Agricultural Wastes*, 44:518-524.
- Thompson, J.M., Bezbaruah, A.N. Selected Pesticide Remediation with Iron Nanoparticles: Modeling and Barrier Applications. Technical Report No. ND08-04. North Dakota Water Resources Research Institute, Fargo, ND, 2008.

The Present Extended NanoTeam

Our Website

http://www.ndsu.edu/pubweb/~bezbarua/

Thank You!